Colorado College Logo

  DigitalCC

Use AND (in capitals) to search multiple keywords.
Example: harmonica AND cobos

MICROCLIMATOLOGY AND TREE GROWTH PATTERNS OF THE ALPINE TREELINE ECOTONE, PIKES PEAK, COLORADO

by Marshall, Emma Kaminer

Abstract

Thermal conditions control the elevation to which trees persist in alpine settings. Long-term historical data suggests a correlation between periods of anomalously warm regional temperatures and treeline advance on Pike’s Peak (Southern Rocky Mountains, Colorado, USA) (Kummel et al., W.I.P). Still, treelines do not uniformly respond to warming and treeline form is shown to be an indicator of sensitivity to warming (Harsch & Bader, 2011). This dependence suggests that further investigation of the relationship between climate and treeline movement is warranted. While alpine vegetation are controlled by the climate at treeline, they also interact with the air around them and in this way influence local climate. This report focuses on the microclimatology of air parcels surrounding individual trees and the relationship between microclimatology and tree growth. We found important results that indicate the formation of distinct microclimatological regions around individual trees. Specifically, it seems that trees act as a barrier to upslope airflow and in so doing cause the formation of eddies on the leeward side of trees. The longer residence times of entrained air tends to correspond with elevated temperature and moisture conditions. This microclimate formation suggests that trees process and shape their local climate in interesting ways. Understanding the sensitivity of treeline to climate change will be a question of understanding the interaction of local tree climate with that of the overall treeline.

Note

The author has given permission for this work to be deposited in the Digital Archive of Colorado College.

Colorado College Honor Code upheld.

Includes bibliographical references.

Administrative Notes

The author has given permission for this work to be deposited in the Digital Archive of Colorado College.

Colorado College Honor Code upheld.

Copyright
Copyright restrictions apply.
Publisher
Colorado College
PID
coccc:11219
Digital Origin
born digital
Extent
66 pages : illustrations
Thesis
Senior Thesis -- Colorado College
Thesis Advisor
Kummel, Miro Whitten, Barbara
Department/Program
Environmental Program
Degree Name
Bachelor of Arts
Degree Type
bachelor
Degree Grantor
Colorado College
Date Issued
2015-05